1. Ma, X.Y., Wei, Z.F., Wang, Y.L., Wang, G., Zhang, T., He, W., Yu, X.L., Ma, H., Zhang, P.Y., Li, S.K., Fan, Q.H., 2023a. Links between geochemical weathering on the NE Tibetan Plateau and global climate change since the Last Deglacial. Catena, 224, 106971.
2. Ma, X.Y., Wei, Z.F., Wang, Y.L., Wang, G., Zhang, T., Ma, H., He, W., Yu, X.L., Zhang, P.Y., 2023b. Temperature and climatic seasonality affecting C3 vs C4 plants since the Last Deglacial on the northeastern Tibetan Plateau. Geochemistry Geophysics Geosystems, doi: 10.1029/2022GC010847, (Accepted).
3. Ma, X.Y., Wei, Z.F., Wang, Y.L., Wang, G., Zhang, T., He, W., Yu, X.L., Ma, H., Zhang, P.Y., Li, S.K., Wei, J.Y., Fan, Q.H., 2021b. Reconstruction of climate changes based δ18Ocarb on northeastern Tibetan Plateau: a 16.1-cal kyr BP record from Hurleg Lake. Frontiers in Earth Science. doi: 10.3389/feart.2021.745972.
4. Ma, X.Y., Wei, Z.F., Wang,Y.L., Wang, G., Zhang, T., Ma, H., He, W., Yu, X.L., Li, S.K., Fan, Q.H., 2021a. Speculation for quantifying increased C4 plants under future climate conditions: Inner Mongolia, China case study. Quaternary International, 592, 97-110.
5. Ma, X.Y., Wei, Z.F., Wang, YL., 2020. Reconstructing of C3/C4 Vegetation Evolution and Climate Variety Since the Last Glacial Maximum in the Northeast Tibetan Plateau. Goldschmidt2020. (会议摘要).
6. Li, S.K., Ma, X.Y., Jiang, S.H., 2022. Long-term drying trend during 51.8-37.5Ma in the Nangqian Basin, central-eastern Qinghai-Tibetan Plateau. Frontiers in Earth Science. doi:10.3389/feart.2022.866304.
7. 马雪云, 魏志福, 王永莉,等. 末次冰盛期以来东北地区霍拉盆地湖泊沉积物记录的C3/C4植被演化[J]. 第四纪研究, 2018, 038(005): 1193-1202.
8. Wang, G., Wang, Y.L., Wei, ZF., He, Wei., Ma, X.Y., Sun, Z.P., Liang, X., Gong, J.C., Wang, Z.X., Pan, Y.H., 2019. Paleoclimate changes of the past 30 cal ka BP inferred from lipid biomarkers and geochemical records from Qionghai Lake, southwest China. Journal of Asian Earth Sciences, 172, (APR.1): 346-358.
9. Wang, G., Wang, Y.L., Wei, ZF., He, W., Ma, X.Y., Zhang, T., 2021. Reconstruction of temperature and precipitation spanning the past 28kyr based on branched tetraether lipids from Qionghai Lake, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, doi:10.1016/j.palaeo.2020. 110094.
10. Wang, G., Wang, Y.L., Wei, ZF., He, W., Zhang, T., Ma, X.Y., Yu, X.L., 2021. Distribution of n-alkan-2-ones in Qionghai Lake sediments, southwest China, and its potential for late Quaternary paleoclimate reconstruction. Journal of Quaternary Science. doi: 10.1002/jqs.3271.
11. Ma, H., Wang, Y.L., Jin, C.S., Wei, Z.F., Wang, G., Zhang, T., He, W., Ma, X.Y., 2021. Relative paleointensity correction of radiocarbon reservoir effect for lacustrine sediments on the northeast Tibetan Plateau. Quaternary Geochronology, doi:10.1016/j.quageo.2021.101193.
12. Zhang, P.Y., Wang, Y.L., Zhang, X., Wei, Z.F., Wang, G., Zhang, T., Ma, H., Wei, J.Y., He, W., Ma, X.Y., Zhu, C., 2022. Carbon, oxygen and strontium isotopic and elemental characteristics of the Cambrian Longwangmiao Formation in South China: Paleoenvironmental significance and implications for carbon isotope excursions. Gondwana Research, 106, 174-190.
|